SANDVIK SAF 2707 HD™ TUBE AND PIPE, SEAMLESS

DATASHEET

Sandvik SAF 2707 HD[™] is a high-alloy duplex (austenitic-ferritic) stainless steel for service in highly corrosive conditions. The grade is particularly suited for use in aggressive acidic and chloride containing environments.

Sandvik SAF 2707 HD[™] characteristics:

- Excellent resistance to pitting and crevice corrosion
- Excellent resistance to stress corrosion cracking (SCC) in chloride containing environments
- High resistance to general corrosion in acidic environments
- Excellent resistance to erosion corrosion
- Excellent corrosion fatigue properties
- Extremely high mechanical strength
- Physical properties that offer design advantages
- Good weldability

STANDARDS

- \$32707
- 1.4658

Product standards

Seamless and welded tube and pipe: ASTM A789, A790

Approvals

ASME Code Case 2586-1.

Particular Material Appraisal (PMA), austenitic-ferritic steel Sandvik SAF 2707HD[™] (seamless tube): PED (Pressure Equipment Directive) 2014/68/EU and AD2000.

CHEMICAL COMPOSITION (NOMINAL)

Chemical composition (nominal) %

Steel	C. Sugar Sugar	Stefan	Si 🖉	Mn	P June June	Jan J. S. Jan Jan Jan J	alington Stationer	Cr	Ni 🧹	Мо
Straft	≤0.030	Steres	≤0.5	≤1.5	≤0.035	≤0.010	aliner Station	_27 _	6.5	4.8

Others N=0.4 Co=1.0

APPLICATIONS

Typical applications for Sandvik SAF 2707 HD[™] are tubular heat exchangers operating in process industries, such as oil refineries, petrochemical and chemical plants.

CORROSION RESISTANCE

General corrosion

Sandvik SAF 2707 HD $^{\text{M}}$ is highly resistant to organic acid corrosion, e.g. formic acid and acetic acid, see Figures 2 to 5. It also remains resistant in contaminated acid. The alloy is, therefore, a competitive alternative to high alloyed austenitic stainless steels and Ni-base alloys in applications where standard austenitic stainless steels corrode at a high rate.

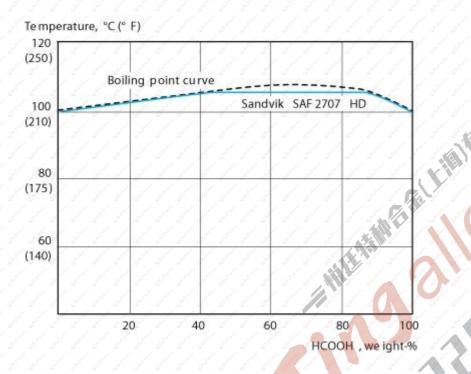


Figure 2. Isocorrosion diagram in naturally aerated formic acid. The curve represents a corrosion rate of 0.1mm/year (4mpy) in a stagnant test solution.

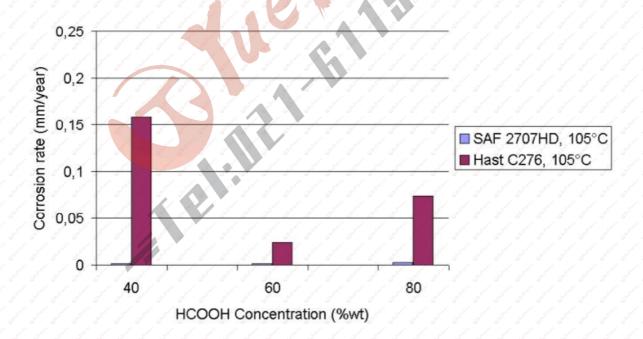
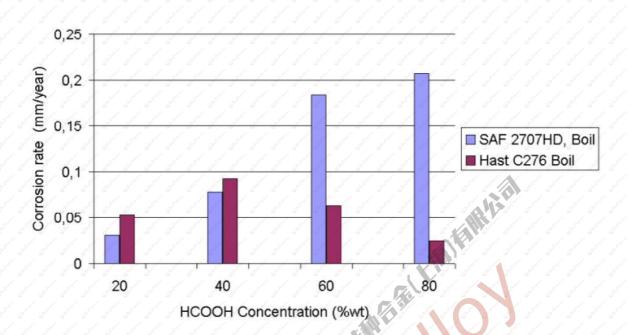



Figure 3. General corrosion resistance of Sandvik SAF 2707 HD $^{\rm M}$ and Hastelloy C276 in various concentrations of formic acidat 105°C.

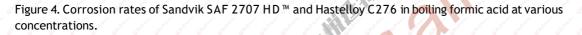


Figure 5. Isocorrosion diagram in naturally aerated acetic acid. The curve represents a corrosion rate of 0,1mm/year (4mpy) in a stagnant test solution.

Resistance to inorganic acids is comparable to, or even better than that of high alloy austenitic stainless steels in certain concentration ranges.

Figure 6 shows an isocorrosion diagram for sulphuric acid, where the resistance of Sandvik SAF 2707 HD^M in up to 50% H2SO4 exceeds the resistance of Sandvik SAF 2507[®] and 316L.

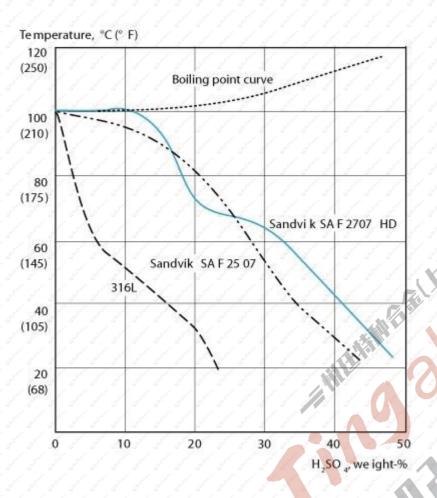


Figure 6. Isocorrosion diagram in naturally aerated sulphuric acid. The curves represent a corrosion rate of 0.1 mm/year (4 mpy) in a stagnant test solution.

Pitting and crevice corrosion

The pitting and crevice corrosion resistance of stainless steel is primarily determined by the content of chromium, molybdenum and nitrogen. An index for comparing the resistance to pitting and crevice corrosion in chloride environments is the PRE number (Pitting Resistance Equivalent). The PRE is defined as, in weight %: PRE=%Cr + 3.3x%Mo + 16x%N.

The minimum PRE value for SAF 2707 HD™ is 48.

One of the most severe pitting corrosion tests, applied to stainless steels, is ASTM G48 i.e. exposure to 6 % FeCl3. In a modified version of the ASTM G48A test, the sample is exposed for periods of 24 hours. When pits are detected, together with a substantial weight loss (> 5 mg), the test is interrupted. Otherwise, the temperature is increased by 5°C (9°F) and the test continued with the same sample.

The corrosion resistance of Sandvik SAF 2707 HD[™] in oxidizing chloride solutions is illustrated by critical pitting temperature (CPT), determined in a "Green-Death" solution (1% FeCl3 + 1% CuCl2 + 11% H2SO4 + 1.2%HCl).

The crevice corrosion test was performed in 6 % FeCl3 with a crevice specified in the MTI-2 procedure, where an artificial crevice is mounted on the sample with a torque of 0.28 Nm. The values obtained and a comparison with Sandvik SAF 2507 are given in Figure 7. All test results show significantly higher values for Sandvik SAF 2707 HD $^{\rm M}$ than for Sandvik SAF 2507 $^{\rm O}$.

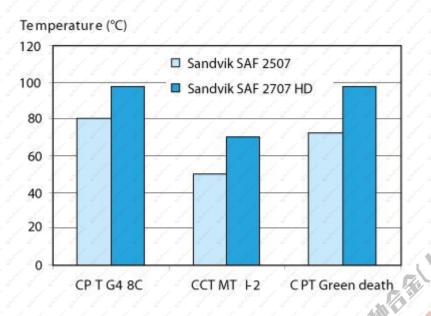


Figure 7. Critical pitting temperature measured in modified G48A and "Green death". Critical crevice corrosion temperature obtained in testing with a crevice specified in the MTI-2 procedure.

Potentiostatic tests in solutions with different chloride contents are reported in Figure 8. The CPT value for Sandvik SAF 2707 HD^M is significantly better than for Sandvik SAF 2507 $_{\odot}$ in highly concentrated chloride solutions. Figure 9 shows the effect of increased acidity. Sandvik SAF 2707 HD^M shows higher CPT values than austenitic stainless steels of the 6Mo+N type, especially at low pH values. In both cases the applied potential is 600mV vs SCE, a very high value compared with that which could be expected in natural, unchlorinated seawater, resulting in lower critical temperatures compared with most practical service conditions.

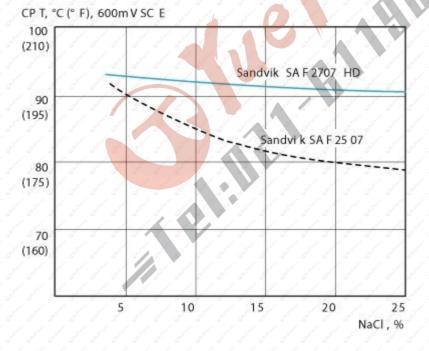


Figure 8. Critical pitting temperatures (CPT) at varying concentrations of sodium chloride, from 3 to 25% (potentiostatic determination at +600mV SCE with surface ground with 220 grit paper).

CP T, °C (° F), 600m V SC E

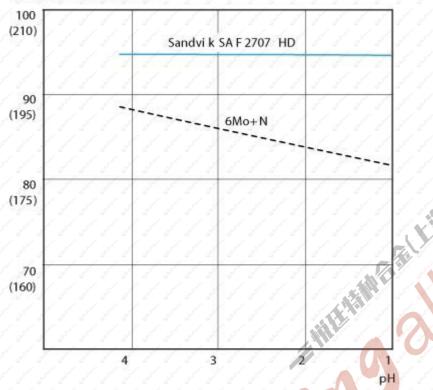


Figure 9. Critical pitting temperatures (CPT) in 3% NaCl with varying pH (potentiostatic determination at +600mV SCE with surface ground with 220 grit paper).

Full scale extended heat exchanger tests in chlorinated natural seawater heated to two different temperatures.

The very good pitting corrosion results in laboratory tests have also been verified in full scale extended heat exchanger tests in chlorinated natural seawater. The residual chlorine content was 0.5 ppm.

Model heat exchangers and heat exchanger tubing in Sandvik SAF 2707 HD [™] and Sandvik SAF 2507[®], welded into UNS S32750 tube sheets and SAF 2205 welded into a UNS S32205 tube sheet were tested for 6 months at each temperature. The inlet temperature of the seawater was 35°C with a seawater flow rate inside the tubes of 1 m/s. Heat was applied from the shell side with external heating elements and thus a heat flux through the tubes was achieved. As the results in the table show, no pitting was observed on Sandvik SAF 2707 HD [™] when the tube skin temperature on the seawater side was 70°C, after tubes were heated from the outside at a temperature of 105°C. At this temperature Sandvik SAF 2507[®] experienced pitting, but passed at 50°C. Sandvik SAF 2205 [™] was attacked by pitting at both temperatures.

	PRE	T(skin-out)/T(sl	kin-in), ∘C
	All Staff Staff Staff Staff	65/50	105/70
Sandvik SAF 2707 HD	≥48	NA*	NA*
Sandvik SAF 2507	≥42.5	NA*	A A A A A A A A A A A A A A A A A A A
Sandvik SAF 2205	≥35	P*	set of P * of the set of the set

* NA denotes no attack, P denotes pitting

Stress corrosion cracking

The stress corrosion cracking resistance of Sandvik SAF 2707 HD™ in chloride environments is excellent.

SCC resistance of Sandvik SAF 2707 HD^M in chloride solutions at high temperatures is illustrated in Figure 10. In these tests, there were no signs of SCC up to 1000 ppm Cl-/300°C (572°F) and 10000 ppm Cl-/250°C (482°F).

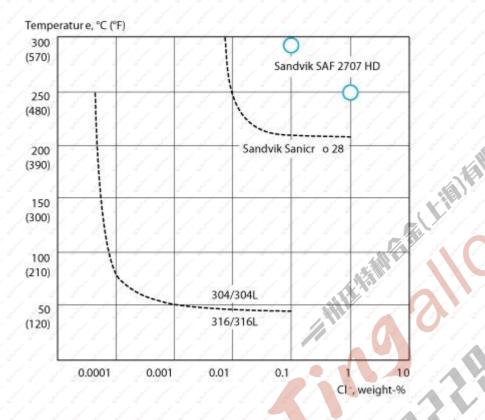


Figure 10. SCC resistance in oxygen-bearing (abt. 8 ppm) neutral chloride solutions. Testing time 1000 hours. Applied stress equal to proof strength at testing temperature.

FABRICATION

Bending

The force needed for bending Sandvik SAF 2707 HD[™] is higher than that for standard austenitic stainless steels, which is a natural consequence of higher proof strength. However, cold bending can be carried out with normal bending methods, and owing to its good ductility, Sandvik SAF 2707 HD[™] can be bent to very close bending radii. Normally, there is no need for subsequent heat treatment. Heat treatment, if any, should be carried out by solution or resistance annealing.

For pressure vessel applications using cold bent tubes, special conditions may apply regarding the minimum bending radii allowed without subsequent heat treatment.

Expanding

Compared to austenitic stainless steels, Sandvik SAF 2707 HD^M has higher proof and tensile strengths. This must be kept in mind when expanding tubes into tubesheets. Normal expanding methods can be used, but the expansion requires higher initial force and should be undertaken in a one-step operation. If the service conditions include a high chloride concentration, tube to tubesheet joints should generally be welded, in order to reduce the risk of crevicecorrosion.

Machining

Being a dual phase material (austenitic-ferritic), Sandvik SAF 2707 HD $^{\text{M}}$ will present a different tool wear profile from that of austenitic stainless steels. The cutting data (speed and feed) must, therefore, be lower than that recommended for austenitic grades. Further information is available on request.

FORMSOF SUPPLY

Seamless tube

Seamless tubes in Sandvik SAF 2707 HD™ can be supplied in typical heat exchanger tube dimensions. Tubes are generally delivered solution annealed, with a pickled or light ground surface condition.

HEAT TREATMENT

Tubes are normally delivered in the heat treated condition. If additional heat treatment is needed due to further processing, solution annealing is recommended. Please contact Sandvik for further information.

MECHANICAL PROPERTIES

The following figures apply to solution annealed seamless tubes with wall thicknesses up to 4 mm.

At 20°C (68°F)

°M (etri	ເັບເ	nits

Proofstre	ngth, MPa	Tensile strength, MPa	Elongation, %	Hardness, HRC
Rp0.2a)	Rp1.0 ^{a)}	Rm	Ab) A2"	
≥700	≥800	920-1100	≥25 ≥25	≤34

Imperial units

Proof strength, ksi		Tensile strength, ksi	Elongation, %		Hardness, HRC	
Rp0.2a)	Rp1.0a)	Rm	Ab)	A2"	HRC	
≥101	≥116	133-160	≥25	≥25	≤34	

$1MPa = 1N/mm^2$

a) Rp0.2 and Rp1.0 correspond to 0.2% offset and 1.0% offset yield strength, respectively. Based on L0 = 5.65 f S0 where L0 is the original gauge length and S0 the original cross-section area.

At high temperatures

If Sandvik SAF 2707 HD[™] is exposed to temperatures exceeding 250°C (480°F) for prolonged periods, the microstructure changes, resulting in a reduction in impact strength. This does not necessarily affect the behavior of the material at the operating temperature. For example, heat exchanger tubes can be used at higher temperatures with no detrimental effects. Contact Sandvik for more information.

Metric units

Temperature, °C	Proof strengt	h,MPa	Tensile strength, MPa
and the set of the set	Rp0.2ª	Rp1.0ª	Rm
and share she and a she are	min.	min.	, min. , , , , , , , , , , , ,
50 50 50 50 50 50	645	760	900
100 / / / / / /	600	670	850
150 8 8 8 8 8	560	640	840
200 0 0 0 0 0 0	540	590	830
250	ِ 510 ه	570	810 0 0 0 0 0 0 0 0
300 0 0 0 0 0 0	500	560	790

Imperial units

Temperature, °F	Proof strengt	h,ksi	Tensile strength, ksi	
and a star a s	Rp0.2ª	Rp1.0a	Rm	
to the stand where the stand where the	min.	min.	min.	
100	93	113	132	

Imperial units

Temperature, °F	Proof streng	gth, ksi	Tensile strength, ksi	
and a start and a start and a start of the s	Rp0.2ª	Rp1.0ª	Rm	er and a star
and share share share share share share	min.	min.	min.	and and a
200	87	98	124	and and a
300	81	93	122	Langer of
400	78	85	120	hear and the
500	74	82	117	Hadrand St
600	72 / /	81 / / 5	114	leatressed St

Impact strength

Sandvik SAF 2707 HD[™] possesses very good impact strength. Figure 1 shows impact energy (KCV). The ductile-brittle transition temperature is below -50°C (-58°F).

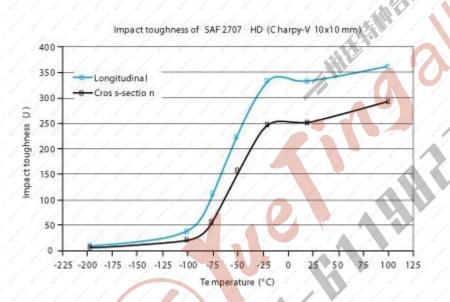


Figure 1. Impact energy curve for Sandvik SAF 2707 HD^M using standard Charpy V specimens 10 x 10mm (average of 3 at each temperature). The samples are taken in the longitudinal and transversal direction from 200 x13 mm hot extruded and solution annealed (1100°C /2012°F) tube.

PHYSICAL PROPERTIES

Density: 7.8 g/cm3, 0.28lb/in3

Specific heat capacity

Metric units, Imperial units

Temperature, ^c	°C	J/(Kg °C)	Temperature, °F	Btu/(Ib °F)
20	And Statement Statement Statement Statement	470	68	, 0.11 , she all all
100	and Statement Statement Statement Statement	495	200	0.12
200 / / /	Station Station Station Station	530	400	0.13 / / /
300	and Statement Statement Statement	560 560	600	0.13
400	and a start and a start and	590 590	800 0 0 0 0 0 0	0.14

Thermal conductivity

Metric units 1)

Temperature, ℃	20	100	200	300	400	and a
SAF2707 HD	12	َ 14	1.6	18	19	
AISI 316L	14	15	ົ້17	18	20	tester C
	and and and and	and	and the set of	and and and and a	g an gan gan gan ga n	L

Imperial units 1)

 Temperature, ⁰F	68 200	400	600	800
SAF2707 HD	7 8	9	10	11
AISI 316L	8 9	10	10	12

1) Btu/(ft h °F)

Thermal expansion

Sandvik SAF 2707 HD[™] has a coefficient of thermal expansion at the same level as carbon steel. The values given are average values in the temperature ranges.

Metric units 1)				
Temperature, °C	30-100	30-200	30-300	30-400
SAF2707 HD	12.5	13	13.5	and a 14 for some some some
AISI 316L	16.5	17	17.5	18

1) x10-6/°C

Imperial units 1)

Temperature, °F	86-200	86-400	86-600	86-800
SAF2707 HD	7	7.5	7.5	7.5
AISI 316L	9.5	9.5	s 10 s s	5 ^{.4} 5 ^{.4} 10 ^{.4} 5 ^{.4} 5 ^{.4} 5 ^{.4}
1) x10-6/°F	Staff Staff Staff Staffer St	A DA A DA DA D	and the state of t	Station Station Station Station Station Station

Resistivity

Temperature, °C	and an and all	μΩm	Temperature, °F	States States States	, μΩin.
y 22 yr yr yr yr	and a start of the start	0.75 🧹	72 July July July July	States States States States	29.5

Modulus of elasticity 1)

Ten	npei	ratu	re, °(Ċ "⁄	and Stealing	100			Star Star			MPa		Temp	oera	ture	, °F							ksi		
20	Steiner	Strefter	Steine	Stafe	Grafia	otel	and a first	Stefer	Stafe	Sheling	Stell	197	Stefeer	68	Sterer	Stefee	Shelver	Sterre	Steller	Steam	Stefre	Stefre	Stafra	Steller	Stefast	28.5
100	Steres	Status	Sterrer	Grafie		States	Status	Sterre	Staffa	Gratin	Stell	189	States	200	an Stefan	Steller	States	of States	of States	of States	States	States	Staffer	and Charles	Stefner	27.5
200	Sterre	States	States	of State	of States	States	States	or States	of the first	of the first	Stall	178	States	400	of States	Sterre	of States	of States	States	Sterry	States	States	of the first	Steller	Steller.	25.7
300	States	of Staffa	Status	ot Staff	States	isternet.	Steeles	Status.	Staff	States	Stell	168	Girden and	600	Status	of States	Statut.	of Status	of States	of Clark	of the first	of States	of State	States	States	24.2

1) (x103)

WELDING

The weldability of Sandvik SAF 2707 HDTM is good. Welding must be carried out without preheating and subsequent heat treatment is normally not necessary. Suitable method of fusion welding is gas tungsten arc welding GTAW/TIG with shielding gas of Ar + 2% N2. For tube to tubesheet welding, it is recommended to use

Ar + 3% N2 as shielding gas to have proper weld metal structure.

For Sandvik SAF 2707 HDTM, heat input of 0.2-1.5 kJ/mm and interpass temperature of <100°C (210°F) are recommended.

Recommended filler metals GTAW/TIG welding

27.7.5.L

Disclaimer: Recommendations are for guidance only, and the suitability of a material for a specific application can be confirmed only when we know the actual service conditions. Continuous development may necessitate changes in technical data without notice. This datasheet is only valid for Sandvik materials.

